kosta.gif
повестки

жалуем

ПРИСУТСТВУЮЩИХ

OS: Linux s
PHP: 5.1.6
MySQL: 10.0.34-MariaDB-cll-lve
Время: 01:55
Caching: Disabled
GZIP: Enabled
Участников: 4
Новостей: 345
Ссылок: 4
посетителей: 11985545

Wednesday, 15 August 2018

ловкость пальцев
 понимания на которых основывается пророческое
Введите искомое слово.

Названии Комментариях Везде
Редакт. глоссарий
Отправить термин

Все | А | Б | В | Г | Д | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Ц | Ч | Э | Ю | Я


Вывод Логический — рассуждение, в ходе которого из к.-л. исходных суждений — посылок — с помощью логических правил получают заключение — новое суждение. Напр., из суждений «Все люди смертны» и «Кай — человек» мы можем вывести с помощью правил простого категорического силлогизма новое суждение: «Кай смертен». В символической логике вывод определяется более строго — как последовательность высказываний или формул, состоящая из аксиом, посылок и ранее доказанных формул (теорем). Последняя формула данной последовательности, выведенная как непосредственное следствие предшествующих формул по одному из пра¬вил вывода, принятых в рассматриваемой аксиоматической тео¬рии, представляет собой выводимую формулу. Поскольку каждая формальная система имеет свои собственные аксиомы и правила вывода, постольку во всякой системе понятие вывода носит спе¬цифический характер. В качестве примера приведем определение понятия вывода для следующей формальной системы. Алфавит системы включает в себя бесконечный набор символов: р, q, r, s, ...; p1 q1, r1, s1, ...; p2q2, r2, s2, ... , которые называются пропозициональными переменными. К ним до¬бавляются следующие четыре символа: (,),->, ~ левая и правая скобки, знак импликации и знак отрицания. Прави¬ла построения формул: 1) всякая пропозициональная переменная есть формула; 2) если А и В суть формулы, то (А—>В) есть формула; 3) если A есть формула, то ~ A есть формула. В качестве аксиом можно принять следующие три формулы: а) s-> (p->s); б) (s->(p->q))->((s->p)->(s->q)); в) (~p->~q)->(q->p). В качестве правил вывода принимаются следующие два правила: 1) Правило подстановки: если формула А получается из формулы А путем замены некоторой переменной повсюду, где она встречается в Л, на некоторую формулу С, то из A следует А'. 2) Правило отделения: из формул вида (А->В) и A следует формула В. Теперь можно определить понятие вывода. Последовательность формул A1, ..., Ат называется выводом формулы A из посылок Г1 ..., Гт, если каждая формула этой последовательности есть либо одна из аксиом системы, либо одна из посылок Г1, ..., Гт, либо получена из каких-то предыдущих формул последовательности по одному из правил вывода данной системы, а формула А есть пос¬ледняя формула данной последовательности. Формулу A, для которой существует вывод из посылок Г1, ..., Гт называют выводимой из Г1, ..., Гт. Утверждение о выводимости формулы A из посылок Г1, ..., Гт записывается так: Г1, ..., Гт |-A и читается: «Формула A выводима из посылок Г1, ..., Гт». Безот¬носительно к специфике формальной системы отношению логи¬ческой выводимости (|-) присущи следующие свойства: 1) Г |- Е,.если Е входит в список посылок Г. 2) Если Г |- Е, то Г, ∆ |- Е для любого перечня формул Д. 3) Если Г |- Е, то ∆ |- Е, когда ∆ получено из Г путем перестанов¬ки формул Г или опускания таких формул, которые тождественны остающимся формулам. 4) Если Г |- Е, то ∆ |- Е, когда ∆ получено из Г за счет опуска¬ния любых формул Г, которые доказуемы или выводимы из остающихся формул Г. / любое само достаточное утверждение есть пропозицией формулы как подтверждающей так и опровергающей как собою так и себя тогда как не само достаточное не завершено для пропозиции себя в формулу ещё раз бог человека сотворил но дальше видим что данное утверждение не есть само достаточным потому и не может служить законом решения вопросов о божьем праве человека бога представлять ибо подобия и образы указаны ну и кто христос когда им множество предстало его представить от себя так почему со знанием христос это 1.1.1.28 верите положительные образы писания и подобные им действия и признаки никакого отношения к христу не имеют мол одним иисусом он предстал так что все остальные богохульствуют помнишь вину иисуса себя за сына возомнил пред теми кто авраама унаследовал
 


Все | А | Б | В | Г | Д | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Ц | Ч | Э | Ю | Я


Glossary V2.0

БЛАГОУСТРАИВАТЬ

для записи 2.27.20.6

чинам чести 1.1.49 чинам чести 2.27.7